New constructions of divisible designs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New constructions of divisible designs

261 Davis, J.A., New constructions of divisible designs, Discrete Mathematics 120 (1993) 261-268. A construction is given for a (p2"(p+l),p,p2"+ 1(p+l),p2"+ ,p"(p+l)) (pa prime) divisible difference set in the group H x z~.+, where His any abelian group of order p+ 1. This can be used to generate a symmetric semi-regular divisible design; this is a new set of parameters for .l. 1 ;<'0, and thos...

متن کامل

Matrix constructions of family (A) group divisible designs

In this note we use matrices to construct group divisible designs (GDDs). The constructions of GDDs of the form A 0 D + A ® D will be carried out in two cases. The first case uses the incidence matrix D of a GDD with a certain (0,1) matrix A. The second case uses the incidence matrix D of a BIBD with A as in the first case. In both cases necessary and sufficient conditions in terms of parameter...

متن کامل

Some constructions of divisible designs from Laguerre geometries

In the nineties, A.G. Spera introduced a construction principle for divisible designs. Using this method, we get series of divisible designs from finite Laguerre geometries. We show a close connection between some of these divisible designs and divisible designs whose construction was based on a conic in a plane of a 3-dimensional projective space.

متن کامل

New Constructions of Lotto Designs

An LD(n, k, p, t; b) Lotto Design is a set of b k-sets (blocks) of an n-set such that any p-set intersects at least one k-set in t or more elements. Let L(n, k, p, t) denote the minimum number of blocks in any LD(n, k, p, t; b) Lotto Design. We shall discuss several techniques for constructing Lotto designs and determining upper bounds for L(n, k, p, t).

متن کامل

New Constructions for Covering Designs

A (v, k, t) covering design, or covering, is a family of k-subsets, called blocks, chosen from a v-set, such that each t-subset is contained in at least one of the blocks. The number of blocks is the covering’s size, and the minimum size of such a covering is denoted by C(v, k, t). This paper gives three new methods for constructing good coverings: a greedy algorithm similar to Conway and Sloan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1993

ISSN: 0012-365X

DOI: 10.1016/0012-365x(93)90586-i